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Abstract--The paper describes the unified mathematical procedures of transient methods for measuring 
surface heat transfer rates. Three heat flux gauges are discussed : thin film, thick-wall gauges placed on 
semi-infinite substrates and thin-skin calorimeters. The aim of this paper is to present a method for a simple 
and accurate determination of the time-varying heat transfer coefficient (or heat flux) given an accurate 
temperature history of the body at a selected point beneath the surface. The interior temperature measure- 
ments are converted into local instantaneous heat transfer coefficients by solving the inverse heat conduction 
problem for the gauge. The effect of the inaccuracies in the measurement of the interior temperature was 
eliminated by cubic spline smoothing or digital filtering of the raw interior temperature data prior to using 
it in the inverse heat conduction analyses. General case closed form equations for instantaneous surface 

heat flux, or heat transfer coefficient, are developed. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

Most heat transfer measurements consist of  moni- 
toring the temperature of  a body at selected points 
and then relating that temperature history to the one 
of  heat transfer rate. In a general case, the tem- 
peratures measured are related in a complex way to 
the heat transfer coefficients and hence, measurements 
are usually made with geometries such that only one 
spatial coordinate needs to be considered. The usual 
quantities of  interest are the local heat flux q~(t), and 
the convective heat transfer h(t). If  the radiation can 
be neglected, the local heat transfer coefficient can be 
easily related to the heat flux 

h - qs (1) 
T~-Ts' 

where T~ represents the material surface temperature 
and T~ is the fluid temperature far away from the 
wall. The devices for measuring heat transfer between 
a flowing fluid and a solid surface can be categorized 
as gauges: (1) semi-infinite one-dimensional gauges, 
(2) thin-skin calorimeter gauges, and (3) thick-wall 
gauges. 

The first method records instantaneous surface tem- 
perature from which instantaneous heat flux rates are 
deduced using the heat conduction solution for the 
semi-infinite substrate [Fig. 1 (a)]. 

The surface heat flux is obtained by using the one- 
dimensional, semi-infinite medium solution for a step 
change in surface temperature [1] and applying 
Duhamel ' s  superposition integral to give 

pck ' 1 df(O) ,~  

wheref(t)  is the measured surface temperature history. 
Such a one-dimensional heat flow can also be achieved 
by having the conducting material in the form of a rod 
or a strip that is well insulated from the surrounding 
model. 

One-dimensional gauges employing surface ther- 
mocouples on such conducting rods fall into this cat- 
egory because they can be considered semi-infinite as 
the thermal penetration distance during experimental 
run-times is small compared to the linear dimension 
of  the gauge [2-11]. 

The most  popular  measurement method for the sur- 
face temperature is the thin-film metal resistance lay- 
ers (such as palladium on M A C O R  or platinum on 
quartz) [3-5, 7] or a surface thermocouples (such as 
coaxial or eroding thermocouples) [8, 11]. The surface 
temperature can also be determined from the cali- 
brated liquid-crystal colour [9, 10]. The thin-skin 
method is one of  the oldest, simplest and most effective 
methods of  obtaining transient heat flux [l 2-16]. 

The calorimetric element is very thin [Fig. 1 (b)], so 
the rate of  rise of  the rear surface temperature, which 
is usually monitored,  is equal to the rate of  rise of  
the mean temperature. The expression used to obtain 
transient heat flux data is given by 

q(t) = pcE~t, (3) 

where f(t) is the back surface temperature history. 
Equat ion (3) assumes no heat losses at the back sur- 
face and a negligible temperature drop across the 
calorimeter wall. 

In the case of  thick-wall gauges [Fig. 1 (c)], the heat 
received by the gauge is largely stored within the gauge 
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NOMENCLATURE 
a time at which heat  flux is maximal  [s] 
A0 . . . . .  A,,, coefficients of  temperature- t ime 

polynomials  
Bi Biot number ,  Bi = hx/k 
c specific heat  [J kg J K 1] 
C~.i . . . . .  C4.~ coefficients (derivatives) of the 

piecewise cubic function 
D heating dura t ion  [s] 
e maximal  tempera ture  error  [K] 
E thermocouple  depth  below heated or 

cooled surface [m] 
measured tempera ture  at  an interior 
point  ['~C] 

h heat  t ransfer  coefficient [W m -~ K ~] 
J total  number  of  the data  points  
k thermal  conduct ivi ty  [W m ~ K El 
N n u m b e r  of  da ta  points  used in digital 

filtering 
q heat  flux [W m 2] 
S least squares funct ion [K 2] 
& time scaling factor 
t time [s] 

.1 

T temperature  [ C ]  
T,, initial tempera ture  dis t r ibut ions 
w, weighting factor 
x spatial coordinate  [m] 
v smoothed  value of  measured 

temperature  at  an interior point  
[ c] .  

Greek symbols 
thermal  diffusivity, ~ = k/cp [m 2 s ~] 

At t ime step Is] 
ci r andom variable of  uni form 

dis t r ibut ion with values in the range 
[ - 1 , 1 ]  

~/ dimensionless parameter ,  t / =  hZt/cpk 
® d u m m y  time variable 
)~ smooth ing  (regularization) paramete~ 

dimensionless parameter ,  ~ = x/2~/~t  
p density [kg m 3] 

root mean  square norm 
r scaled time. 

a) 

qs(t) ~ - 4 ~  

f(t)" 

semi-infin~e body 

b) 

q,(t) ,---> ~ thermal 

gauge~ k=O 
insulation 

c) 

qs(t) ' :"Is ~ substrate 

gauge~ 
Fig. 1. Basic geometries of gauges used in heat transfer 
measurements: (a)semi-infinite one-dimensional gauge; (b) 

thin-wall (calorimeter) gauge; (c) thick-wall gauge. 

while only a small por t ion  is t ransferred to the substr-  
ate. 

In this case the measured tempera ture  is related in 
a more complex way to surface heat  flux than that  for 
thin-skin calorimeters.  

ANALYSIS 
The physical model  tha t  may be applied to bo th  

the semi-infinite and calorimeter  gauge is tha t  of  a 
uni form slab on a semi-infinite substrate  composed of  
different material.  

The ins tan taneous  surface tempera ture . / ( t )  of  the 
substrate  is measured at x = E. The problem is to 
calculate the front  surface tempera ture  and  the heat  
flux at x = 0 given the measured tempera ture  at  point  
x = E .  

The problem can be subdivided into two separate 
problems,  one of  which is a direct problem,  as shown 
in Fig. 2. The semi-infinite body from x = E to x -~ 
;'v can be analysed as a direct p roblem because the 
boundary  condi t ions  at  bo th  boundar ies  are known 
[T,_(E, t) = J ( t )  at  x = E, ?T2/~x = 0 and  T2 = T~ at 
x-- ,  ~o]. When  substrate  thermal  propert ies are tre- 
ated as constant ,  the heat  flux qE passing th rough  
surface x = E is calculated by conver t ing the mea- 
sured tempera ture  history to heat  t ransfer  rate by 
using Duhamel ' s  Theorem (2). 

The same heat  flux qE must  leave body 1 
(0 ~< x ~< E). Two condi t ions  ( temperature  and  heat  
flux) are prescribed at x = E in body 1 and  none at 
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Gauge 

qs (t) --'7 ~ / f ( t )  

~ qE(t) 

Semi-infinite 
substrate 

qr~(7~ 

x 
Fig. 2. Subdivisions of an inverse heat conduction problem 

into inverse and direct problems. 

x = 0. The surface temperature Ts = T~ (0, t) and heat 
flux qs = -k~aT~/dx Ix=0 histories of body 1 must be 
determined from conditions at location x = E. Such 
a problem is referred to as an inverse problem. 

The general solution of the inverse problem was 
independently given by Stefan [17], Burggraf [18] and 
Langford [19] 

1 (E--x)  2" d"y 
7", (x, t) = y(t) + °y~_ 

(2n)! n dt" = 1  (X I 

%,x,[ 1 
+ qE(t)+~=, (2n+l)~ ~'~ ~-t"J (4) 

q~(t) = - k ,  OT, 
6~x x=o 

E2. 1 1 d"y 
= qE(t)+ki ~= (2n--l)!  " dt ~ 

= I  O{ I 

~, E 2" dnqe 1 

+ ,= .  (2n)! dr" ~ 
(5) 

The solution requires that finite order derivatives 
of the measured temperature y(t) and calculated heat 
flux qE(t) at interior location x = E must exist. The 
method is stable for any time step, provided d"y/dt" 
and d"qE/dt" are bounded. 

Unwanted oscillations (oscillatory instability) can 
be produced in the calculated surface temperature or 
heat flux if the time derivatives are not calculated with 
sufficient accuracy. 

The above series converge quite rapidly, so that only 
the first few time derivatives need to be considered. 

Truncating equations (4) and (5) after the third 
or second derivative yields approximate solutions of 
acceptable accuracy. 

In a heat-conduction body, variations in the surface 
conditions are always damped at the interior points. 
In the inverse heat conduction problems, the surface 
temperature and heat flux histories are obtained from 
the damped temperature data taken at a subsurface 
location. Therefore, one cannot hope to find the 
higher frequency components of the boundary con- 
ditions using only interior temperature measurements, 

especially when the temperature sensor is located far 
from the surface. 

To determine rapid variations in the surface con- 
ditions, the temperature sensor should be placed as 
close to the surface as possible. 

HEAT FLUX TRANSFERRED TO SUBSTRATE 
MATERIALS 

The temperature measurements at x = E are made 
at discrete times : h, t2 . . . . .  tM or in general at time t, 
at which the temperature measurement is denoted f .  
If the interface temperature between successive times 
is assumed to vary linearly with time (Fig. 3), equation 
(2) can be integrated analytically to give [2] 

~T2 ~Tl] 
qE(tM+,) = --kz ~ x  ~=e = - k ,  c~-]~=e 

kapzc2 M f + l  - f  

= 2 ~ i ~ = , 4 t u + , - - t i + i  + tx/7~u~l--t i 

(6) 

Polynomial regression data fitting technique can 
also be applied to smooth the surface temperature- 
time response 

y(t) = h o + A i t + A z t 2 + ,  "'" , +Amt m = ~ A,t i. 
i = 0  

(7) 

Substituting of the polynomial approximation (7) 
into equation (2) and its integrating yields [20] 

qE(t) = 2 ~ {  AIN~t+~ 

x 1 + ( i - 1 ) ! 2  '= . (8) 

If m ~< 5, equation (8) reduces to a simple form 

f(t) 

f, 

t, t2 t, ti t~l tM tM+, 
Fig. 3. Piecewise linear interpolation of the time-temperature 

data. 
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qE(t) 2 ~ C z p 2 k 2 [ A , t l 2 + ~ A 2  t3'2 8 ~'" = + ~ A ~ r . -  

64 7 [ 2  128 9 , 2  + E A a t  + ~ A s t  ]. (9) 

The solutions (6) and (8) have several practical 
limitations. 

Since the inverse solutions given by equation (4) 
and (5) require continuous first- and high-order 
derivatives of temperature data y(t)  and heat flux qL, 
equation (6) is not  appropriate. A major weakness of 
equation (8) is then low accuracy of the polynomial 
fitting. 

Polynomial smoothing allows the calculation of 
high-order derivatives, but may not  reproduce the real 
data points, especially when the time spread of the 
fitted data is large. 

These restrictions can be avoided by using an alter- 
nate procedure based on spline or digital filter 
smoothing of the temperature time data. 

The experimental temperature is represented by a 
third-order spline in the form (Fig. 4) 

>,~(~) = C , . ~ + C ~ ( z - ~ : ) +  '~ C3.:(r r,)-" 

+~C~.,(r-r,)', 
zi<-Gr <<.r,_l , i= 1,2 . . . .  , M  (10) 

where r = Stt is scaled time and St is the scaling factor, 
A general cubic polynomial (10) involves four con- 

stants : 

C,,  = y(r:) ¢/(r,), 

dy:(z,) I dy:(t,) 
C2.i = y'(ri) -- dr 

C~., = >'"(z,) - 

S, dt 

d~y~(L) 1 d:)',(t3 

d3yi(zi) 1 d3yi(ti) 
C4.i = y'"(ri) - (11) 

dr 3 St 3 dt 3 

There is a sufficient flexibility in the cubic spline 
approximation to ensure that not only is the smooth- 
ing spline continuously differentiable on the interval. 
but also that it has a continuous second derivative on 
the interval. 

The identical form (10) has the orthogonal Gram 
polynomial of degree 3 used to construct a digital 
filter. However, the digital filters do not ensure the 
continuity of the functions y:(z) and their derivatives 
at the nodes r,. 

Starting with equation (2) and the assumption that 
the surface temperature response is approximated by 
cubic splines (10), the surface heat flux qe (r) can be 
expressed as 

q(z.,/+, ) 

c2p2k2 i~1 dO - -  1 dO]x~ t t  
N:,/"T __ {~ 

( x/ ~ i:iL 

W i  ~ 9 (:4i  5 2 5 '2 ~] (P;'--R: ~) + Tf (e ,  -R,.' )] 

r 

M =  1,2,3 . . . . .  ( J - l )  (12) 

where 

dr:  S~ dt 2 P , = r M _ , - %  

y(t)  

~,eg¢ [ I [ [ I [ Ix=S,  t=__ 
elf1 Z2 "U3 ~'~M TN~+I "gi "l;i+l 
Fig. 4. Cubic spline interpolation of the time-temperature data. 
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Ri = r M + l  --ri+l ~ 

C3 i 2 Fi = C,.,+C2sP~+ ~ - P ,  + ~2  p3, 

dFi C4i 2 
Vi -- dZM+ I C2,1÷ C 3 , i P i ÷ 2 P i ,  

dZFi 
W i -- C 3 , i ÷ C 4 , i e  i. (13) 

The time derivatives required in the exact solutions 
(4) and (5) can be calculated analytically with high 
accuracy. 

The first two derivatives are 

dyM(tM+ l ) dyM(rM+, ) 
dt - St dr - St VM' 

d2yM(tM+ 1) -- $2 WM ' 
dt 2 

dqF~(tM+l) dqE(ZM+l) 
-- S t 

dt dr 

= ) 

Wi 1/2 1,2 C4i (p3i2 _ R~I2)] + ~-(e, -R,, ) -  T~ 
J 

WM 1 2 

C4"Mp~2)}$3/2, M =  1,2,3, 
12 "'" 

d _ 2 q e ( t M + , )  = $2 t dgqe(rM+,) 
d t  2 d r  2 

=~2  [ ~ / ~ M  , [ _ ~ ( e }  ~ i=l 3/2) -- R}-3/2)) 

+ ~ (p}- 1j2). - R}- 1i2)) 3÷ ~ C4,i(pil/2 - R)/2)] 

~ (  VM p(M3,2) ÷ 3WM p( m) 
+2 - ~ -  4 M 

+ 3 r  .,Jdl ,J2 g'.-'4.M--M /]j"-'t , M =  1,2,3 . . . . .  ( J - - l ) .  

(14) 

CUBIC SPLINE SMOOTHING OF THE 
MEASUREMENT DATA 

An observation of the time-temperature curve 
reveals, that small segments of the curve can be closely 
approximated by cubic splines, equation (10). A spline 

is simply a piecewise polynomial, the pieces joined 
together at points called 'knots'.  In particular, a cubic 
spline (10) is a piecewise cubic polynomial, con- 
structed in such a way that second derivative con- 
tinuity is preserved at the knots. The temperature 
data are known to be in error. Suppose that pairs of 
temperature data values (f, tl), i = 1 . . . . .  J are 
observed, and we wish to describe the relationship 
between them with a regression model 

f = y(ti) + e ' e i ,  (15) 

where el are the uncorrelated errors with zero mean 
and y(t) is the smoothing polynomial spline of degree 
3. The total number of measurements is J > 4. The 
more frequently used method of fitting smoothing 
splines parallels the least squares curve-fitting 
procedure, by minimizing a criterion that depends 
on a least-squares-like term, plus a term penalizing 
roughness. A measure of the rapid local variation of 
a curve can be given by a roughness penalty such as 
the integrated squared second derivative. The fitted 
spline is the solution to the optimization problem [21- 
251. 

Minimize 

w,[y(rD - f d  2 +,t (16) 
i=l 

where the parameter 2 > 0 controls the amount of 
smoothing. If ,1 is too small, the spline will overfit in 
the limiting case as ,1 --, 0, becoming an interpolating 
spline. As ,1 --* o% the smoothing term dominates and 
removes not only noise, but "signal' as well. The cor- 
rect choice of 2 is of considerable importance. The 
method of cross-validation for choosing 2 has also 
been offered as an option for choosing 2 [26, 271. It 
can be shown [23, 24] that the curve y has the following 
properties : 

(i) is a cubic polynomial in each interval [% r~+ ~] ; 
(ii) at the measurement point % the curve and its 

first two derivatives are continuous, but there may be 
a discontinuity in the third derivative. 

Schrnberg [22] and also Reinsch [23, 24] point out 
that the spline solution y(z) to equation (16) has the 
property that it minimizes 

f~i[y"(r)]2dz (17) 

subject to 

J 
Y~ w,[y(rk-f,]2 ~< s, (18) 
i=1 

where S is a given nonnegative number which controls 
the extent of smoothing. 

This, of course, is a global method, requiring all the 
data points be available before fitting can begin. The 
choice of the spline smoothing parameter, S, is some- 
what arbitrary. Fortunately, a wide optimum range 
for the smoothing parameter, S, can be found that 



3738 J. TALER 

gives accurate results. The results obtained for various 
S differ only in degree of smoothing [28]. 

If the smoothing parameter, S, is too small, the 
developed method produces a noise in the estimated 
surface heat flux or heat transfer coefficient. 

The noise error can usually be distinguished from 
true fluctuation in transient heat transfer without a 
p r i o r i  knowledge of the noise error with the input 
signal. 

Furthermore, the inverse heat conduction problem 
involves the calculation of the surface heat flux and 
heat transfer coefficient from the transient, measured 
temperature history inside a solid. The higher fre- 
quency components of the boundary conditions are 
damped at an interior point at a higher rate than 
the lower frequency components. In the inverse heat 
conduction problem, the boundary conditions are 
estimated based on the low frequency components of 
the input signal. 

The spline smoothing technique or digital low-pass 
filtering used in the paper allow us to separate the 
lower frequency components of the true signal from 
the higher frequency components in the measurement 
errors. 

For practical purposes, it is sufficient to choose the 
smoothing parameter S subjectively, by plotting out 
a few temperature-time curves and choosing the one 
which 'eliminates best' the high frequency measure- 
ment errors from the input data. 

If the method developed is to be used routinely on 
a large number  of data sets or a part of a larger 
procedure then an automatic choice of the smoothing 
parameter, S ,  is essential. In these cases the smoothing 
of the temperature data can be performed using the 
spline smoothing methods presented in refs. [29, 30]. 
Both these methods attempt to follow trends in the 
data and are applicable even if the magnitude of error 
is unknown. The methods do not require explicit 
specification of the control parameters. However, the 
test calculations show, that the method by Reinsch 
[23] gives more accurate results. If the time steps 
At, = h+, - t, are too small or too large it often hap- 
pens that the minimizing procedure for estimating the 
spline coefficients becomes ill-conditioned. One way 
to overcome this difficulty is to introduce scaled time 

= S t t .  The effect of bad scaling in the Reinsch 
method [23, 24] is that values of spline coefficients : 
Ct,~ . . . . .  C4, ,  are affected by round-off-errors and the 
sum of squares 

~ w,[r(r,)-./<;] -~ 
i I 

splines can begin. However, for on-line systems, it is 
frequently necessary to follow and fit the data without 
knowing its end beforehand. The local method, in 
which the polynomial pieces are calculated as the data 
is gathered, is useful for such cases. In the case of a 
local method, the approximating cubic spline in any 
interval between data points depends only on a small 
set of  neighbouring data points. For  example, an N- 
point moving digital filter is a local approximation. 
The digital filter approach is important  because it 
is much more computationally efficient than other 
methods. Heat transfer coefficient measuring devices 
can incorporate the digital filter, and immediate 
graphical output  can be provided. 

Numerical experiments indicate that for equally 
spaced data points 7 ~< N ~< 11 is satisfactory. Least- 
squares fitting with orthogonal Gram polynomial of 
degree 3--11 (N = 11) equally spaced data points (Fig. 
5) yields for the center point i 

.t', = ) ' ( t , ) = ~ ( - - 3 0 7 '  I ~+9[; 4+44/'; 3 + 6 9 f  : 

+8411 , +89L+84II+,  +6911-2 +4411~ ~ 

+ 9141~ 4 - -  3611+~) 

dv(t,) I 
) ' ; -  dt - 5 1 4 8 - A t  (300[I 5 -294 /< i  4 -532 /< i  

- 503/<i 2 - 296/<i , + 296[i+ ~ + 50!/<;.2 

+532) ' i~3  +294/< i .4  300/<i, 5) 

.l'i' d-'y(h) 5 
- + J, ~ - 77.L 3 dt 2 143 "(At) 2 ( f  ~ : • t • 

- - r . 2 5 -  i I 

- r~.l,+ ~ +7.D ~4 +.1; ~_~) 

3'i" d3y(/, .) _ 5 i • 
dfl 143"(At) :~ ( - f  s +~j '  4 

+ 1 1 - .  + 2 3 - . .  7. - .  7 , - -  ~Ji23 • + 2 
l~.], 3 311.1i 2 + ' i ' 7 , L - 1 - - 1 5 . / < / + 1  

I I  ' I ' 

- i~ . l ,+  ~ -7 . [ ,+  4 +[ i+  5)- (19)  

Substituting equation (19) into equation (11) gives 
the coefficients of the spline function (10). 

In order to treat each data point in the same 
manner, the scanning (gathering) of the data should 
start at least ( N - 1 ) / 2  = 5 time steps At before the 
cooling or heating process starts. 

If this is done, the heat flux q e ( t )  can be calculated 
a r t = 0 .  

is not equal to the a p r i o r i  given value S. 
APPLICATION OF PROCEDURES 

DIGITAL FILTERING OF M E A S U R E M E N T  DATA 

The smoothing procedure described above is a glo- 
bal method that requires knowledge of all the data 
points before construction of the approximating 

in order to examine the accuracy of the proposed 
procedures, three different test cases are solved. 

In the first example surface temperature measure- 
ments are used to estimate the instantaneous heat flux 
to a semi-infinite body. 



Transient experimental techniques 3739 

f,y 

-1 

,% 
'pf 

ta 

l'i+a 

A t - , , - -  t 

Fig. 5. Digital filtering of the time-temperature data. 

A semi-infinite copper body is exposed to the heat 
flux that varies in time in a triangular fashion 

t t 
q ~ ( t ) = q m ~ x ~ ,  0 ~ < ~ < a ;  

t / q¢(t) -----qmax 1 - - 1 - -  ~ , a~<D~< 1, (20) 
/ 

where D is heating duration. The maximum heat flux 
qm,x occurs at a. The surface temperature history of  a 
semi-infinite solid initially at the uniform temperature 
;to = 0°C is given by ref. [31] 

y5- 4 
Tw = TIx=° = q ~/ nk~cp ~a 0 <~ <~ a, 

Tw = 7]x=o = q~,~x p 3 a  

X D )  3/2 ~D-1-_~aa)-, a ~< D ~< 1. (21) 

The 'measured'  temperatures at the surface are 
simulated by adding a random error ~j to exact tem- 
peratures 

J} = Tj + e" aj, j  = 1 . . . . .  J (22) 

where ej is a random variable of  a uniform distribution 
with values in the range [ -  1, 1] and e is the maximum 
magnitude of  the temperature error, 

This artificial data is then input into the inverse 
algorithm and its output  is compared to the original 
assumed heat flux. 

Figure 6 shows the artificial data for a particular 
case a = 0 . 5 ,  D = 0.1 s, qmax = 100000 kW m 2 
To = 0°C, kcp --- 1372.7 (kJ 2 m -4 K z s- i ) ,  e = 5 K. 

The simulated measured temperature data f ,  con- 
taining measurement errors, are shown as the data 

points in the figure, while the solid line represents the 
exact data. The time step At is 1.4286" 10 -3 s. There 
are then 70 time steps (J  = 71). The dotted line rep- 
resents the results of  measured data smoothing with 
cubic splines and the parameter values St = 100 and 
S = 434 K 2. 

This value of  S was subjectively adjusted. The 
resulting splines for the temperature data taken at 
x = 0, shown in Fig. 6, give a very good compromise 
between smoothness and exactness of  fit. 

A measure of  the errors in the temperature measure- 
ments f ( t )  is the sample root mean square norm. It is 
given by 

af = [ f -  Tw(ti)] 2 = e - ~ e/2. 
i i=1 

(23) 

In this test case : o-f = 2.783 K. 
If  the discretized computed heat flux component  is 

denoted q(t~) and the true component  is qo(t~), in order 
to measure the error, the root mean square norm is 
determined as 

/ ~ 1  J 
trq = ~ / ~ _  l i~=z[q(ti)--qe(ti)]e. (24) 

In this equation the summation is from i = 2 as 
q(t = 0) is not  known. 

Some numerical results for errorless measurements 
with trf = 0 and inexact measurement with trr = 2.783 
K are shown in Figs. 7 and 8. Figure 7 shows the 
results for errorless data. Clearly, the agreement 
between the estimated and the true heat flux is excel- 
lent. 

The spline smoothing approach to interpolating 
temperature measurements produces better results 
than the interpolation by straight-line pieces, the 
difference is not  large though. The root mean squared 
errors in q are aqa = 190.3 kW m -z and aq.s = 70.7 
kW m -2 for piecewise linear and spline interpolation, 
respectively. 

The results obtained by using measurements with 
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0.04 0.05 0.06 0.07 0.08 0.09 0.10 
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Fig. 6. Surface temperature of semi-infinite body for triangular heat flux; 
measurements, +--inexact temperature measurements. 

errorless temperature 

random errors are also in good agreement with the 
exact (known) heat flux history, in spite of large errors 
in the input data (Fig. 8). The spline interpolation, in 
conjunction with Duhamel 's  integral method, yields 
results slightly better than more common piecewise 
linear interpolation (aq.s = 3096.5 kW m -2 and 
aq,l = 3577 kW m-2). 

However, the interpolation of the input data has 
limited applicability because the estimated heat flux 
curve is noisy and time derivatives of the surface heat 
flux qe(t) cannot  be evaluated with sufficient accuracy. 
When a spline smoothing technique with S = 434 K 2 
is applied to the inexact temperature-time data, excel- 
lent results are again obtained. 

Figure 9 shows that the triangular shape of heat 
flux is quite well reproduced and the results are 
smooth. The root mean squared error is aq,~ = 935.1 
kW m -2. The results of  the application of the three 
techniques for calculating the surface heat flux clearly 
indicate that the spline smoothing technique is 
superior to the piecewise linear and spline inter- 
polation procedures. 

In the second example a transient technique for 
measuring heat transfer between a flowing fluid and a 
solid surface is presented. 

In the experiments, whereas a high temperature sur- 
face was spray cooling with water spray, the heat 
transfer coefficient is evaluated from the transient 
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Fig. 7. Calculated surface heat flux with errorless data ; - known (exact) heat flux and calculated heat 
flux for spline interpolation of the time-temperature data, +--calculated heat flux--piecewise linear 

interpolation of the time-temperature data. 
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perature data. 

response of  the solid at some interior point  x = E. 
When the solid has a low thermal diffusivity and is 
very thick or when the transient of  interest is very 
short, the solid temperature response is limited to 
a thin layer near the surface and the solid may be 
considered to be a semi-infinite medium. 

In order to test the accuracy of  the method,  approxi- 
mate recovering of  heat transfer coefficient h(t) is 
investigated for semi-infinite solid, initially heated to 
a uniform temperature To and suddenly exposed to 

convective environment. The heat transfer coefficient 
h and fluid temperature T~o are assumed constant over 
the duration of  the experiment. The exact data for this 
problem are generated using the analytical solution 
[1] given by 

T(x, t) = T~ + (To - T~){erf~ +exp(Bi+t l )  

• [1-erf(¢+,v/~)l} ,x>>.O, (25) 

where 
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Fig. 9. Calculated surface heat flux for inexact temperature data; - - - -  known (exact) heat flux, + - -  
piecewise linear interpolation of the time-temperature data, - - - - - s p l i n e  approximation of the time- 

temperature data (S = 434 K2). 
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The exact surface heat flux is then calculated as 
fol lows'  

q~ = q(0, t) = - k  = h[T,  - T,(t)], (26) 

where the surface temperature is obtained from equa- 
tion (25) ; the result is 

f , ( t )  = T(O~t)= T, + ( T 0 - 1 " ,  ) 

x exp (q ) ' [ l  -e t ; f lV 'q )  ]. (27) 

The transient heat flux at x = E is calculated using 
the equation (12). 

The temperature field and the surface heat flux are 
determined using the exact solution (4) and (5). 

Only two first terms in equations (4) and (5) were 
evaluated to compute the temperature and heat flux 
responses with a good accuracy. 

The 'measured'  temperatures are obtained from 
equation (22) for e = 2 K. Simulated experimental 
temperatures have been generated for 101 time points 
with a time step of  1 s. The root mean squared error 
in the temperature data is a~ = 1.147 K. 

A temperature sensor is located at an interior point, 
E = 0.006 m below the cooled surface. The thermal 
properties of  the test body (a thick steel wall of  the 
PWR reactor) are assumed to be constant  and the 

Figure 10 shows the exact (solid line) and simulated 
measured temperatures (crosses) for the parameters  
values : h = 2000 W m-2 K, T0 = 300°C, T~ = 2 0 C .  

The effect of  inaccuracies in the measurement  of  the 
interior temperature is minimized by smoothing the 
raw interior temperature time data prior to the cal- 
culation of  the heat transfer coefficient. 

The spline smoothing approach with S~ = 1 and 
S = 150 K 2 or the 1 l-point  digital filter (N = 11) are 
used to smooth the corrupted data. 

For this value of  smoothing parameter,  S, the curve 
y(t) in Fig. 12 looks very good, i.e. is smooth and 
eliminates random errors. 

The fluid temperature T~ = 2 0 C  is not disturbed 
by random errors. 

When a third-order spline interpolation (S = 0) is 
applied to the disturbed temperature time data of 
Fig. 10, the results are of  little interest because the 
estimation of  the heat transfer coefficient is very poor. 
Therefore. graphical results for this case are not pre- 
sented. 

Notice that  though h is actually constant,  it is deter- 
mined as though it were a time varying function h(t). 

The root mean square norm for h is determined as 

f 1 J . . . . . . . . .  

= - y .  [ h ( t , ) -  ho(t , ) ]  2 , (28) 

where h(t~) is the computed heat transfer coefficient 
and h~(tg) is the true value o fh ( t )  at t~. 

Figure 10 shows the calculated temperature at the 
surface (x = 0) and at the location x = E/2 = 0.003 
m for the errorless data (S,- = 0, S = 0). Clearly, the 
agreement between the estimated and the exact surface 

following values are used : k = 42 W in ~ K ~, temperature is excellent. The true surface temperature 
~ =  11.6"10 ~'mes ~ , c p k =  158629212Jem a K  ~ is indicated by empty squares. Figure 11 depicts the 
s ~. estimated heat flux at x = E = 0.006 m and at the 
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Fig. 10. Temperature of a semi-infinite body determined fi-om temperature measurements at the location 
x = E = 0.006 m, using spline approximation of the temperature-data ; + ~exact data, • • ---spline inter- 
polation (S = 0), -~:alculated temperature at x = E/2 = 0.003 m. calculated surface temperature, 

[] mxact surface temperature. 
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x = E = 0.006 m using spline approximation (S = 0) of the temperature ; . . . .  heat flux at x = E = 0.006 

m, - - - - - s u r f a c e  heat flux, [] -----exact surface heat flux, A--heat  transfer coefficient. 

surface (x = 0), and the heat transfer coefficient for 
the same data used in Fig. 10. The root  mean squared 
error in h for o-f = 0 is : O" h = 37.6 W m -2 K '. Inspec- 
tion of  Figs. 10 and 11 indicates that  both  the true 
surface heat flux and temperature are in very good 
agreement,  a l though some oscillations in the heat 
transfer coefficient are observed near t = 0. The esti- 
mated surface heat flux and heat transfer coefficient 
exhibit greater errors associated with lower accuracy 
of  the spline smoothing for a short  time. In addition, 
to achieve higher accuracy, the third- and higher-order 
derivatives should be retained in the series (5) as t 
0. 

The effect o f  the uncertainty in the input tern- 

perature data can be seen in Figs. 12 and 13. Note  
that  the temperature measurement  errors primarily 
affect the estimated heat transfer coefficient (tr h = 95 
W m 2 K-~) .  Compared  to the error in the recovered 
heat flux and heat transfer coefficient, the calculated 
temperatures are found to be less sensitive to random 
errors in the data. It should be noted that  prior to 
applying the inverse heat conduct ion procedure,  the 
tempera ture- t ime data have been smoothed using the 
cubic spline with S = 150 K 2. 

When  the 11-point digital filter is applied to the 
same disturbed temperature- t ime data, the results 
(Figs. 14 and 15) are in fair agreement with the true 
values (trh = 143.1 W m -2 K-~) .  For  the case of  
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Fig. 12. Temperature of semi-infinite body determined from inexact temperature measurements at the 
location x = E = 0.006 m using spline approximation of the temperature data ; +--inexact temperature 
data, • . . . .  spline approximation (S = 150 K2), - - - -calculated temperature at x = El2 = 0.003 m, 

- - - -  calculated surface temperature, [] ---exact surface temperature. 
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Fig. 14. Temperature of semi-infinite body determined from inexact temperature measurements at the 
location x = E = 0.006 m using the l l-point digital filter for smoothing of the temperature data ; + 
inexact temperature data, ..- smoothed temperature using the I 1-point digital filter, ~a lcula ted  
temperature at x = E/2 = 0.003 m, calculated surface temperature, [] --exact surface temperature. 

err = I. 147 K, the results look good, but not as smooth 
as those for the spline smoothing approach. The scat- 
ter in the estimated heat flux and heat transfer 
coefficient is caused primarily by the piecewise 
approximation used in digital filtering. Unlike the 
smoothing splines, in digital filtering neither the func- 
tion nor its first derivatives are required to be continu- 
ous. If the errors in the t ime- temperature  data are 
smaller (e = 0.5 K, ar = 0.287 K), the resulting heat 
transfer coefficient is much smoother  and gives a very 
good representation of  the true value (Fig. 16) 
(ah = 105.8 W m -2 K -J). The advantage of  the digital 
filter approach is that  it requires less computer  time, 
particularly as more time steps are considered. 

In the third example, the actual measured data from 
a thermal shock experiment are considered [32]. 

The heat transfer to droplets impinging on a heated 
surface was investigated based on experimentally 
acquired temperature at an interior location of  a semi- 
infinite body. The rapid cooling of  a hot  solid surface 
with an impinging water jet is used in many industrial 
processes. 

Typical applications are found in the cont inuous 
casting processes of  metallurgical industries and the 
emergency cooling of  pressure vessels of  P W R  reac- 
tors [33]. 

The experimental study presented in ref. [32] was 
made in at tempting to obtain the fundamental  infor- 
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Fig. 16. Heat transfer coefficient and surface heat flux determined from inexact temperature measurements 
at the location x = E = 0.006 m. The temperature data with errors from interval ___0.5 K smoothed using 

the 11-point digital filter (nomenclature as Fig. 15). 

mat ion concerning the heat transfer from a heated 
wall to saturated droplets deposited on it in the post-  
dryout  mist flow regime. 

Measurements  of  the surface heat flux during the 
residence time of  a droplet  on the high temperature 
surface were made based on the t ime-dependent  vari- 
ation of  the wall temperature measured near the 

surface. 
The test surface was a 0.01 m diameter  and 0.005 

m thick stainless steel disc supported by a sheathed 
chromel-a lumel  thermocouple of  0.00065 m O.D 
located at the centre of  the disc. The thermocouple 
junct ion is located at distance E = 0.0003 m from the 
cooled surface. 

In the present study, the surface temperature and 
heat flux are calculated from recorded temperature 

variations at x = E = 0.0003 m, assuming that  the 
disc behaves as a semi-infinite body with uniform 
initial temperature.  

The thermal properties of  the disc material are 
assumed to be constant  as follows : 

k =  17 .65Wm - 1 K  - l ,  

= 4.26" 10 -6 m 2 s -1, 

cpk = 73127307J 2 m -4 K -2 s i. 

The inverse heat conduct ion (IHC) calculations are 
performed on the experimental temperature data 
shown in Table 1. 

For  these computat ions,  St = 10 000 is used. Prior 
to applying the IHC procedure,  the t ime- tempera ture  
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Table I. Temperature-time variations, measured at a dis- 
tance of x = E = 0.0003 m on droplet impingement 

i t, [s] /~ [~c] 

I. 0 250.0 
2. 0.001 249.8 
3. 0.002 249.3 
4. 0.003 247.6 
5. 0.004 245.3 
6. 0.005 242.3 
7. 0.006 240. I 
8. 0.007 238.0 
9. 0.008 236.6 
10. 0.009 236.0 
11. 0.01 235.5 
12. 0.011 235.3 
13. 0.012 235.2 
14. 0.013 235.25 
15. 0.014 235.3 
16. 0.015 235.4 

data  from the thermocouple  are approximated  by 
cubic spline functions using the Reinsch method  with 
S = 0.5 K 2. 

In this case, the small value of  S was chosen, as the 
n u m b e r  of  data  points  is not  large ( J  = 16) and  the 
temperature  measurementsf ( t , )  (Fig. 17) i = 1 . . . . .  16 
are not  noisy. 

Figure 17 shows the temperature  decay in a semi- 
infinite body (stainless steel disc). The surface tem- 
perature  decreases sharply on the droplet  impinge- 
ment,  but  its recovery after the droplet  rebounding  is 
also rapid. Al though  the value of  E = 0.0003 m is 
small, the temperature  difference between the point  
x -- E and the cooled surface : x = 0 is large. Also the 
heat  flux at  location x = E differs very significantly 
from that  at  the surface (Fig. 18). The heat flux at  the 
disc surface changes in a complicated manne r  with 
t ime on droplet  impingement .  Dur ing  the direct con- 
tact of  the impinging droplet  with the metal  surface, 

the surface heat  flux decreases remarkably.  Then,  the 
surface tempera ture  increases and  the state shifts to 
film bo i l i ng - - a  spheroidal  s t a t e - -wi th  a thin  s team 
film between the droplet  and  disc surface. The heat 
t ransfer  rate to the droplet  in a spheroidal  state is very 
low [32]. Positive surface heat  flux in the t ime interval 
6.5 s < t < 12 s results p robab ly  from errors  of  the 
temperature  measurements  at x = E =  0.0003 m. 
Using the me thod  developed, the t ransient  surface 
heat  t ransfer  to the droplets  impinging on a heated 
surface can be examined in detail. 

C O N C L U D I N G  R E M A R K S  

A technique for determining the t ransient  heat  flux 
and heat  t ransfer  coefficient at a solid interface, based 
on experimentally acquired interior  tempera ture  t ime 
data,  is developed. For  the analysed case of  a single 
interior tempera ture  history, the problem is sub- 
divided into two separate problems : a direct problem 
for the semi-infinite solid and  an  inverse problem for 
the flat plate. The heat  flux at the location of  the 
temperature  sensor is determined from the solution 
of  one-dimensional  heat  conduc t ion  using Duhamel ' s  
theorem. Globa l  and  local spline approximat ions  are 
used to smooth  the measured interior  t empera tu re -  
t ime curves. A general case closed form equa t ion  for 
the interface heat  flux is obtained.  

Knowing both  the tempera ture  and  heat  flux at a 
sensor location, the tempera ture  and  heat  flux at the 
active surface are determined from the solution of  
the inverse heat  conduct ion  problem using Stefan-  
Burggra f -Langford  method.  

The total  and  global cubic spline approximat ions  
of the measured  tempera ture  data  are compared  for 
the same test cases. The methods  generally give a 
similar answer,  but  the global spline approx imat ion  
gives slightly better  results, e.g. more accurate and  

25O 

240 
T[°C] 

23O 

220 

210 

200" 

190 

180 

170 
0 

[ 
' t 
! I 
~ I 
I 
J • 

• I 
I 

: I 
• * i ! 

2 4 6 8 

t[ms] 

I I [ 

I I o 

. 

I S = 0.5 K 2" 

r l 
10 12 14 16 

Fig. 17. Cooling curves of semi-infinite body after the impingement of saturated droplets upon a heated 
surface ; +--temperature data at x = E = 0.0003 m, •. • spline approximation of the temperature data 
(S = 0.5 K2), --- calculated temperature at x = E:2 = 0.00015 m, • --calculated surface temperature. 
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Fig. 18. Heat flux results after the impingement of saturated droplets upon a heated surface ; . . . .  heat 
flux at x = E = 0.0003 m determined by using piecewise linear interpolation of the temperature data,. • . -  
heat flux at x = E = 0.0003 m determined by using spline approximation of the temperature data (S = 0.5 
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smoother .  In terms of  comput ing  time, the local spline 
approx imat ion  takes much  less t ime than  the global 
approximat ion .  The local approx imat ion  has the 
advan tage  tha t  the inverse heat  conduc t ion  problem 
can be solved on-line on  a personal  computer .  

The developed technique is also very useful for 
handl ing  very complex geometries. Clearly, it is no t  
precise to use equa t ion  (2) as the formula  for cal- 
culat ing the t ransient  heat  t ransfer  coefficient for non-  
p lanar  boundar ies ,  bu t  for shor t  dura t ion  exper- 
iments, the heat  conduc t ion  within the solid can be 
assumed to be locally one-dimensional ,  neglecting the 
heat  flow along the bounda ry  surface. The local, t ime-  
dependent  heat  t ransfer  coefficients can be determined 
from measured  t empera tu re - t ime  var ia t ions  at  several 
subsurface points  of  the solid. This technique has  the 
following advantages  : 

(1) it is economical  because a shor t  dura t ion  test 
does not  require much  t ime to carry out  the exper- 
iment  ; 

(2) the measurements  can be ob ta ined  with simple, 
low cost exper imental  models  and  equipment  ; 

(3) a l though  the da ta  analysis is relatively com- 
plicated, the comput ing  time is very small. 
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